kb.pub

📖 READER VIEW (Read-Only, Public Access)

Inefficient Database Queries

Публичная сессияСессия #64716.01.2026👁️ 46 просмотровВопросы веб-разработки и веб-приложений
🤖

AI Analysis Summary

The website's backend performance is degrading, with a strong suspicion that inefficient database queries are the root cause. This requires optimization to restore responsiveness.

Описание проблемы

My website's backend is becoming slow, and I suspect it's due to inefficient database queries. I need to optimize these queries to improve performance.

Вопросы

5 вопросов
Q1

What specific database system are you using? (ID: 3346)

MySQL

Q2

How frequently do you observe this slowness? (ID: 3347)

During peak traffic hours

Q3

Are there any specific pages or features on the website that are noticeably slower than others? (ID: 3348)

Product listing page

Q4

Have there been any recent changes to the database schema, application code, or server infrastructure? (ID: 3349)

Yes, already tried that

Q5

What is the approximate size of your primary database tables? (ID: 3350)

1000000

Выявленные причины

4 причины
#1

Отсутствующие или неэффективные индексы

90%

Отсутствие соответствующих индексов базы данных на часто запрашиваемых столбцах заставляет базу данных выполнять полное сканирование таблиц, что значительно замедляет выполнение запросов.

#2

Неоптимизированные SQL-запросы

80%

Запросы могут быть плохо написаны, использовать подзапросы без необходимости, выбирать больше столбцов, чем нужно, или выполнять сложные операции, которые можно упростить.

#3

Проблема N+1 запроса

75%

Это происходит, когда приложение делает один запрос для получения списка элементов, а затем для каждого элемента делает отдельный запрос для получения связанных данных, что приводит к большому количеству неэффективных запросов.

#4

Большие наборы данных и неэффективные соединения

65%

Присоединение очень больших таблиц без надлежащей индексации или эффективных стратегий соединения может привести к значительным узким местам в производительности.

Рекомендуемые решения:

8 решений
💡

Analyze Query Execution Plans

95%Official
Use database tools (e.g., EXPLAIN in MySQL/PostgreSQL) to understand how queries are being executed and identify full table scans.

🤖 AI Analysis

"The user suspects inefficient database queries are causing slowness, and analyzing query execution plans (like using EXPLAIN in MySQL) is the most direct way to identify the root cause of such inefficiencies, such as full table scans. This directly addresses the user's suspicion."

💡

Add Missing Indexes

90%Official
Create indexes on columns used in WHERE clauses, JOIN conditions, and ORDER BY clauses for frequently executed queries.

🤖 AI Analysis

"Inefficient queries often stem from missing indexes, especially on large tables (1 million rows mentioned). Adding indexes to columns used in WHERE, JOIN, and ORDER BY clauses is a common and highly effective solution for speeding up database operations, particularly for the 'Product listing page' which likely involves filtering and sorting."

💡

Select Only Necessary Columns

85%Official
Avoid using `SELECT *` and instead specify only the columns required by the application.

🤖 AI Analysis

"The user's problem is backend slowness due to database queries. Using `SELECT *` is a common anti-pattern that can lead to fetching unnecessary data, increasing I/O and network traffic. Specifying only necessary columns is a fundamental optimization for query performance, especially relevant for a 'Product listing page' where not all product details might be needed initially."

💡

Refactor Complex Queries

80%Official
Rewrite queries to be more concise and efficient, avoiding redundant operations and using appropriate SQL constructs.

🤖 AI Analysis

"Complex queries can be a significant source of performance issues. Refactoring them to be more concise and efficient, avoiding redundant operations, is a direct way to address the suspected problem. This is particularly relevant if the 'Product listing page' has a complex query behind it."

💡

Optimize Join Conditions

75%Official
Ensure join conditions are indexed and that the join order is logical for performance.

🤖 AI Analysis

"Optimizing join conditions is crucial for performance, especially if the 'Product listing page' involves joining multiple tables (e.g., products with categories, reviews, etc.). Ensuring joins are indexed and logically ordered can significantly improve query speed."

💡

Implement Eager Loading

70%Official
Modify application code to fetch related data in a single query using JOINs or specific ORM features.

🤖 AI Analysis

"Eager loading can prevent N+1 query problems, which are common when fetching related data. If the slowness on the 'Product listing page' is due to fetching product details and their associated data in separate queries, eager loading would be a relevant solution."

💡

Consider Denormalization or Materialized Views

60%Official
For frequently accessed complex joins, consider denormalizing data or using materialized views to pre-compute results.

🤖 AI Analysis

"For frequently accessed complex data on the 'Product listing page', denormalization or materialized views can offer significant performance gains by pre-computing results. This is a more advanced optimization but highly relevant if simpler query optimizations don't yield sufficient improvements."

💡

Batch Queries

50%Official
Group multiple individual queries into a single, more efficient batch query where possible.

🤖 AI Analysis

"Batching queries is useful for reducing the overhead of multiple small queries. While it can improve performance, it's less likely to be the primary cause of significant backend slowness compared to inefficient individual queries, especially given the focus on a specific page ('Product listing page')."

Помочь другим